{ "id": "1012.5687", "version": "v1", "published": "2010-12-28T03:12:07.000Z", "updated": "2010-12-28T03:12:07.000Z", "title": "Coupling and Applications", "authors": [ "Feng-Yu Wang" ], "comment": "16 pages", "categories": [ "math.PR" ], "abstract": "This paper presents a self-contained account for coupling arguments and applications in the context of Markov processes. We first use coupling to describe the transport problem, which leads to the concepts of optimal coupling and probability distance (or transportation-cost), then introduce applications of coupling to the study of ergodicity, Liouville theorem, convergence rate, gradient estimate, and Harnack inequality for Markov processes.", "revisions": [ { "version": "v1", "updated": "2010-12-28T03:12:07.000Z" } ], "analyses": { "keywords": [ "applications", "markov processes", "transport problem", "probability distance", "liouville theorem" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.5687W" } } }