{ "id": "1012.5541", "version": "v3", "published": "2010-12-26T19:28:36.000Z", "updated": "2012-02-03T19:03:02.000Z", "title": "The singular fibre of the Hitchin map", "authors": [ "Peter B. Gothen", "André Oliveira" ], "comment": "28 pages; v3; minor changes: added Proposition 3.7 and main Theorem 8.1 now also refers the fibre over zero; final version", "doi": "10.1093/imrn/rns020", "categories": [ "math.AG" ], "abstract": "Given any line bundle L of positive degree, on a compact Riemann surface, let $M_L^\\Lambda$ be the moduli space of L-twisted Higgs pairs of rank 2 with fixed determinant isomorphic to $\\Lambda$ and traceless Higgs field. We give a description of the singular fibre of the Hitchin map $H:M^L_\\Lambda\\to H^0(L^2)$, when the corresponding spectral curve has any singularity of type $A_{m-1}$. In particular, we prove directly that this fibre is connected.", "revisions": [ { "version": "v3", "updated": "2012-02-03T19:03:02.000Z" } ], "analyses": { "subjects": [ "14H60", "14H40" ], "keywords": [ "hitchin map", "singular fibre", "compact riemann surface", "line bundle", "corresponding spectral curve" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.5541G" } } }