{ "id": "1012.5428", "version": "v5", "published": "2010-12-24T20:03:36.000Z", "updated": "2015-08-29T17:01:51.000Z", "title": "Multiplicity and regularity of periodic solutions for a class of degenerate semilinear wave equations", "authors": [ "Jean Marcel Fokam" ], "comment": "Lemma 1.1 in previous version had a mistake", "categories": [ "math.AP" ], "abstract": "We prove the existence of infinitely many classical periodic solutions for a class of degenerate semilinear wave equations: \\[ u_{tt}-u_{xx}+|u|^{s-1}u=f(x,t), \\] for all $s>1$. In particular we prove the existence of infinitely many classical solutions for the case $s=3$ posed by Br\\'ezis in \\cite{BrezisBAMS}. The proof relies on a new upper a priori estimates for minimax values of, a pertubed from symmetry, strongly indefinite functional,depending on a small parameter.", "revisions": [ { "version": "v4", "updated": "2011-06-22T03:41:48.000Z", "comment": "Previous version had a computationl error in section 1 and a mistake in section 2", "journal": null, "doi": null }, { "version": "v5", "updated": "2015-08-29T17:01:51.000Z" } ], "analyses": { "subjects": [ "35A15", "35Jxx", "35B45", "35L05", "35B10", "42B35", "34C25" ], "keywords": [ "degenerate semilinear wave equations", "multiplicity", "regularity", "classical periodic solutions", "proof relies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.5428M" } } }