{ "id": "1012.5185", "version": "v1", "published": "2010-12-23T12:21:30.000Z", "updated": "2010-12-23T12:21:30.000Z", "title": "Wegner estimate and Anderson localization for random magnetic fields", "authors": [ "Laszlo Erdoes", "David Hasler" ], "comment": "30 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a two dimensional magnetic Schroedinger operator with a spatially stationary random magnetic field. We assume that the magnetic field has a positive lower bound and that it has Fourier modes on arbitrarily short scales. We prove the Wegner estimate at arbitrary energy, i.e. we show that the averaged density of states is finite throughout the whole spectrum. We also prove Anderson localization at the bottom of the spectrum.", "revisions": [ { "version": "v1", "updated": "2010-12-23T12:21:30.000Z" } ], "analyses": { "keywords": [ "anderson localization", "wegner estimate", "spatially stationary random magnetic field", "dimensional magnetic schroedinger operator", "finite throughout" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.5185E" } } }