{ "id": "1012.4774", "version": "v1", "published": "2010-12-21T19:33:07.000Z", "updated": "2010-12-21T19:33:07.000Z", "title": "On convolutions of Euler numbers", "authors": [ "Zhi-Wei Sun" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We show that if p is an odd prime then $$\\sum_{k=0}^{p-1}E_kE_{p-1-k}=1 (mod p)$$ and $$\\sum_{k=0}^{p-3}E_kE_{p-3-k}=(-1)^{(p-1)/2}2E_{p-3} (mod p),$$ where E_0,E_1,E_2,... are Euler numbers. Moreover, we prove that for any positive integer n and prime number p>2n+1 we have $$\\sum_{k=0}^{p-1+2n}E_kE_{p-1+2n-k}=s(n) (mod p)$$ where s(n) is an integer only depending on n.", "revisions": [ { "version": "v1", "updated": "2010-12-21T19:33:07.000Z" } ], "analyses": { "subjects": [ "11B68", "11A07", "05A99" ], "keywords": [ "euler numbers", "convolutions" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.4774S" } } }