{ "id": "1012.4667", "version": "v3", "published": "2010-12-21T14:20:46.000Z", "updated": "2011-03-09T07:31:56.000Z", "title": "Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions", "authors": [ "Roman Novikov", "Matteo Santacesaria" ], "journal": "Bulletin des Sciences Math\\'ematiques 135, 5 (2011) 421-434", "doi": "10.1016/j.bulsci.2011.04.007", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study the multi-channel Gel'fand-Calder\\'on inverse problem in two dimensions, i.e. the inverse boundary value problem for the equation $-\\Delta \\psi + v(x) \\psi = 0$, $x\\in D$, where $v$ is a smooth matrix-valued potential defined on a bounded planar domain $D$. We give an exact global reconstruction method for finding $v$ from the associated Dirichlet-to-Neumann operator. This also yields a global uniqueness results: if two smooth matrix-valued potentials defined on a bounded planar domain have the same Dirichlet-to-Neumann operator then they coincide.", "revisions": [ { "version": "v3", "updated": "2011-03-09T07:31:56.000Z" } ], "analyses": { "keywords": [ "multi-channel gelfand-calderón inverse problem", "global uniqueness", "dimensions", "smooth matrix-valued potential", "bounded planar domain" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.4667N" } } }