{ "id": "1012.4034", "version": "v1", "published": "2010-12-17T23:29:49.000Z", "updated": "2010-12-17T23:29:49.000Z", "title": "Identities and congruences for a new sequence", "authors": [ "Zhi-Hong Sun" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "Let $[x]$ be the greatest integer not exceeding $x$. In the paper we introduce the sequence $\\{U_n\\}$ given by $U_0=1$ and $U_n=-2\\sum_{k=1}^{[n/2]}\\binom n{2k}U_{n-2k}\\quad(n\\ge 1)$, and establish many recursive formulas and congruences involving $\\{U_n\\}$.", "revisions": [ { "version": "v1", "updated": "2010-12-17T23:29:49.000Z" } ], "analyses": { "subjects": [ "11A07", "11B68" ], "keywords": [ "congruences", "identities" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.4034S" } } }