{ "id": "1012.3919", "version": "v1", "published": "2010-12-17T16:38:00.000Z", "updated": "2010-12-17T16:38:00.000Z", "title": "Constructing $x^2$ for primes $p=ax^2+by^2$", "authors": [ "Zhi-Hong Sun" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "Let $a$ and $b$ be positive integers and let $p$ be an odd prime such that $p=ax^2+by^2$ for some integers $x$ and $y$. Let $\\lambda(a,b;n)$ be given by $q\\prod_{k=1}^\\infty (1-q^{ak})^3(1-q^{bk})^3 = \\sum_{n=1}^\\infty \\lambda(a,b;n)q^n$. In the paper, using Jacobi's identity $\\prod_{n=1}^\\infty (1-q^n)^3 = \\sum_{k=0}^\\infty (-1)^k(2k+1)q^{\\frac{k(k+1)}2}$ we construct $x^2$ in terms of $\\lambda(a,b;n)$. For example, if $2\\nmid ab$ and $p\\nmid ab(ab+1)$, then $(-1)^{\\frac{a+b}2x+\\frac{b+1}2}(4ax^2-2p) = \\lambda(a,b;((ab+1)p-a-b)/8+1)$. We also give formulas for $\\lambda(1,3;n+1),\\lambda(1,7;2n+1)$, $\\lambda(3,5;2n+1)$ and $\\lambda(1,15;4n+1)$.", "revisions": [ { "version": "v1", "updated": "2010-12-17T16:38:00.000Z" } ], "analyses": { "subjects": [ "11E16", "11E25" ], "keywords": [ "odd prime", "jacobis identity", "positive integers" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.3919S" } } }