{ "id": "1012.3508", "version": "v4", "published": "2010-12-16T03:33:37.000Z", "updated": "2011-08-16T00:57:02.000Z", "title": "Expansions of subfields of the real field by a discrete set", "authors": [ "Philipp Hieronymi" ], "journal": "Fund. Math. 215 (2011) 167-175", "categories": [ "math.LO" ], "abstract": "Let K be a subfield of the real field, D be a discrete subset of K and f : D^n -> K be a function such that f(D^n) is somewhere dense. Then (K,f) defines the set of integers. We present several applications of this result. We show that K expanded by predicates for different cyclic multiplicative subgroups defines the set of integers. Moreover, we prove that every definably complete expansion of a subfield of the real field satisfies an analogue of the Baire Category Theorem.", "revisions": [ { "version": "v4", "updated": "2011-08-16T00:57:02.000Z" } ], "analyses": { "subjects": [ "03C64", "14P10", "54E52" ], "keywords": [ "discrete set", "cyclic multiplicative subgroups defines", "real field satisfies", "baire category theorem", "definably complete expansion" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.3508H" } } }