{ "id": "1012.3235", "version": "v1", "published": "2010-12-15T06:42:31.000Z", "updated": "2010-12-15T06:42:31.000Z", "title": "A triangulation of $\\CC P^3$ as symmetric cube of $S^2$", "authors": [ "Bhaskar Bagchi", "Basudeb Datta" ], "comment": "29 pages", "journal": "Discrete Comput Geom 48 (2012), 310--329", "categories": [ "math.AT", "math.CO" ], "abstract": "The symmetric group $S_3$ acts on $S^2 \\times S^2 \\times S^2$ by coordinate permutation, and the quotient space $(S^2 \\times S^2 \\times S^2)/S_3$ is homeomorphic to the complex projective space $\\CC P^3$. In this paper, we construct an 124-vertex simplicial subdivision $(S^2 \\times S^2 \\times S^2)_{124}$ of the 64-vertex standard cellulation $S^2_4 \\times S^2_4 \\times S^2_4$ of $S^2 \\times S^2 \\times S^2$, such that the $S_3$-action on this cellulation naturally extends to an action on $(S^2 \\times S^2 \\times S^2)_{124}$. Further, the $S_3$-action on $(S^2 \\times S^2 \\times S^2)_{124}$ is \"good\", so that the quotient simplicial complex $(S^2 \\times S^2 \\times S^2)_{124}/S_3$ is a 30-vertex triangulation $\\CC P^3_{30}$ of $\\CC P^3$. In other words, we construct a simplicial realization $(S^2 \\times S^2 \\times S^2)_{124} \\to \\CC P^3_{30}$ of the branched covering $S^2 \\times S^2 \\times S^2 \\to \\CC P^3$. Finally, we apply the BISTELLAR program of Lutz on $\\CC P^3_{30}$, resulting in an 18-vertex 2-neighbourly triangulation $\\CC P^3_{18}$ of $\\CC P^3$. The automorphism group of $\\CC P^3_{18}$ is trivial. It may be recalled that, by a result of Arnoux and Marin, any triangulation of $\\CC P^3$ requires at least 17 vertices. So, $\\CC P^3_{18}$ is close to vertex-minimal, if not actually vertex-minimal. Moreover, no explicit triangulation of $\\CC P^3$ was known so far.", "revisions": [ { "version": "v1", "updated": "2010-12-15T06:42:31.000Z" } ], "analyses": { "subjects": [ "57Q15", "57R05", "57M60" ], "keywords": [ "triangulation", "symmetric cube", "quotient simplicial complex", "vertex-minimal", "coordinate permutation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.3235B" } } }