{ "id": "1012.3183", "version": "v2", "published": "2010-12-14T22:03:40.000Z", "updated": "2011-04-18T20:46:58.000Z", "title": "Strichartz estimates for Dirichlet-wave equations in two dimensions with applications", "authors": [ "Hart F. Smith", "Christopher D. Sogge", "Chengbo Wang" ], "comment": "Final version, to appear in the Transactions of the AMS. 20 pages, 2 figures", "journal": "Transactions of the American Mathematical Society, 364 (2012), 3329-3347", "doi": "10.1090/S0002-9947-2012-05607-8", "categories": [ "math.AP" ], "abstract": "We establish the Strauss conjecture for nontrapping obstacles when the spatial dimension $n$ is two. As pointed out in \\cite{HMSSZ} this case is more subtle than $n=3$ or 4 due to the fact that the arguments of the first two authors \\cite{SmSo00}, Burq \\cite{B} and Metcalfe \\cite{M} showing that local Strichartz estimates for obstactles imply global ones require that the Sobolev index, $\\gamma$, equal 1/2 when $n=2$. We overcome this difficulty by interpolating between energy estimates ($\\gamma =0$) and ones for $\\gamma=\\frac12$ that are generalizations of Minkowski space estimates of Fang and the third author \\cite{FaWa2}, \\cite{FaWa}, the second author \\cite{So08} and Sterbenz \\cite{St05}.", "revisions": [ { "version": "v2", "updated": "2011-04-18T20:46:58.000Z" } ], "analyses": { "subjects": [ "35L71" ], "keywords": [ "dirichlet-wave equations", "applications", "local strichartz estimates", "minkowski space estimates", "obstactles imply global" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.3183S" } } }