{ "id": "1012.2878", "version": "v2", "published": "2010-12-13T21:09:45.000Z", "updated": "2011-09-05T16:16:14.000Z", "title": "Exponentially many perfect matchings in cubic graphs", "authors": [ "Louis Esperet", "Frantisek Kardos", "Andrew King", "Daniel Kral", "Serguei Norine" ], "categories": [ "math.CO" ], "abstract": "We show that every cubic bridgeless graph G has at least 2^(|V(G)|/3656) perfect matchings. This confirms an old conjecture of Lovasz and Plummer. This version of the paper uses a different definition of a burl from the journal version of the paper and a different proof of Lemma 18 is given. This simplifies the exposition of our arguments throughout the whole paper.", "revisions": [ { "version": "v2", "updated": "2011-09-05T16:16:14.000Z" } ], "analyses": { "keywords": [ "perfect matchings", "cubic graphs", "old conjecture", "cubic bridgeless graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2878E" } } }