{ "id": "1012.2801", "version": "v2", "published": "2010-12-13T17:07:36.000Z", "updated": "2011-03-14T11:17:52.000Z", "title": "Subgroup separability in integral group rings", "authors": [ "Á. del Río", "M. Ruiz Marín", "P. Zalesski" ], "comment": "9 pages", "categories": [ "math.GR", "math.RA" ], "abstract": "We give a list of finite groups containing all finite groups $G$ such that the group of units $\\Z G^*$ of the integral group ring $\\Z G$ is subgroup separable. There are only two types of these groups $G$ for which we cannot decide wether $ZG^*$ is subgroup separable, namely the central product $Q_8 Y D_8$ and $Q_8\\times C_p{with} p \\text{prime and} p\\equiv -1 \\mod (8)$.", "revisions": [ { "version": "v2", "updated": "2011-03-14T11:17:52.000Z" } ], "analyses": { "subjects": [ "16S34", "20C05", "16U60" ], "keywords": [ "integral group ring", "subgroup separability", "subgroup separable", "central product", "decide wether" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2801D" } } }