{ "id": "1012.2743", "version": "v1", "published": "2010-12-13T14:44:46.000Z", "updated": "2010-12-13T14:44:46.000Z", "title": "On the asymptotic distribution of the singular values of powers of random matrices", "authors": [ "Nikita Alexeev", "Friedrich Götze", "Alexander Tikhomirov" ], "categories": [ "math.PR" ], "abstract": "We consider powers of random matrices with independent entries. Let $X_{ij}, i,j\\ge 1$, be independent complex random variables with $\\E X_{ij}=0$ and $\\E |X_{ij}|^2=1$ and let $\\mathbf X$ denote an $n\\times n$ matrix with $[\\mathbf X]_{ij}=X_{ij}$, for $1\\le i, j\\le n$. Denote by $s_1^{(m)}\\ge...\\ge s_n^{(m)}$ the singular values of the random matrix $\\mathbf W:={n^{-\\frac m2}} \\mathbf X^m$ and define the empirical distribution of the squared singular values by $$ \\mathcal F_n^{(m)}(x)=\\frac1n\\sum_{k=1}^nI_{\\{{s_k^{(m)}}^2\\le x\\}}, $$ where $I_{\\{B\\}}$ denotes the indicator of an event $B$. We prove that under a Lindeberg condition for the fourth moment that the expected spectral distribution $F_n^{(m)}(x)=\\E \\mathcal F_n^{(m)}(x)$ converges to the distribution function $G^{(m)}(x)$ defined by its moments $$ \\alpha_k(m):=\\int_{\\mathbb R}x^k\\,d\\,G(x)=\\frac {1}{mk+1}\\binom{km+k}{k}. $$", "revisions": [ { "version": "v1", "updated": "2010-12-13T14:44:46.000Z" } ], "analyses": { "subjects": [ "60F05", "15B52", "60B20" ], "keywords": [ "random matrices", "asymptotic distribution", "independent complex random variables", "independent entries", "random matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2743A" } } }