{ "id": "1012.2741", "version": "v1", "published": "2010-12-13T14:37:24.000Z", "updated": "2010-12-13T14:37:24.000Z", "title": "Fractional Harmonic Maps into Manifolds in odd dimension n>1", "authors": [ "Francesca Da Lio" ], "comment": "27 pages", "categories": [ "math.AP" ], "abstract": "In this paper we consider critical points of the following nonlocal energy {equation} {\\cal{L}}_n(u)=\\int_{\\R^n}| ({-\\Delta})^{n/4} u(x)|^2 dx\\,, {equation} where $u\\colon H^{n/2}(\\R^n)\\to{\\cal{N}}\\,$ ${\\cal{N}}\\subset\\R^m$ is a compact $k$ dimensional smooth manifold without boundary and $n>1$ is an odd integer. Such critical points are called $n/2$-harmonic maps into ${\\cal{N}}$. We prove that $\\Delta ^{n/2} u\\in L^p_{loc}(\\R^n)$ for every $p\\ge 1$ and thus $u\\in C^{0,\\alpha}_{loc}(\\R^n)\\,.$ The local H\\\"older continuity of $n/2$-harmonic maps is based on regularity results obtained in \\cite{DL1} for nonlocal Schr\\\"odinger systems with an antisymmetric potential and on suitable {\\it 3-terms commutators} estimates.", "revisions": [ { "version": "v1", "updated": "2010-12-13T14:37:24.000Z" } ], "analyses": { "subjects": [ "58E20", "35J20", "35B65", "35J60", "35S99" ], "keywords": [ "fractional harmonic maps", "odd dimension", "critical points", "dimensional smooth manifold", "nonlocal energy" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2741D" } } }