{ "id": "1012.2710", "version": "v3", "published": "2010-12-13T12:32:42.000Z", "updated": "2011-04-26T15:38:08.000Z", "title": "On the Asymptotic Spectrum of Products of Independent Random Matrices", "authors": [ "Friedrich Götze", "Alexander Tikhomirov" ], "comment": "Complete formulas (4.14); correct typos", "categories": [ "math.PR" ], "abstract": "We consider products of independent random matrices with independent entries. The limit distribution of the expected empirical distribution of eigenvalues of such products is computed. Let $X^{(\\nu)}_{jk},{}1\\le j,r\\le n$, $\\nu=1,...,m$ be mutually independent complex random variables with $\\E X^{(\\nu)}_{jk}=0$ and $\\E {|X^{(\\nu)}_{jk}|}^2=1$. Let $\\mathbf X^{(\\nu)}$ denote an $n\\times n$ matrix with entries $[\\mathbf X^{(\\nu)}]_{jk}=\\frac1{\\sqrt{n}}X^{(\\nu)}_{jk}$, for $1\\le j,k\\le n$. Denote by $\\lambda_1,...,\\lambda_n$ the eigenvalues of the random matrix $\\mathbf W:= \\prod_{\\nu=1}^m\\mathbf X^{(\\nu)}$ and define its empirical spectral distribution by $$ \\mathcal F_n(x,y)=\\frac1n\\sum_{k=1}^n\\mathbb I\\{\\re{\\lambda_k}\\le x,\\im{\\lambda_k\\le y}\\}, $$ where $\\mathbb I\\{B\\}$ denotes the indicator of an event $B$. We prove that the expected spectral distribution $F_n^{(m)}(x,y)=\\E \\mathcal F_n^{(m)}(x,y)$ converges to the distribution function $G(x,y)$ corresponding to the $m$-th power of the uniform distribution on the unit disc in the plane $\\mathbb R^2$.", "revisions": [ { "version": "v3", "updated": "2011-04-26T15:38:08.000Z" } ], "analyses": { "subjects": [ "60F05", "60B20", "15B52" ], "keywords": [ "independent random matrices", "asymptotic spectrum", "spectral distribution", "mutually independent complex random variables", "eigenvalues" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2710G" } } }