{ "id": "1012.2693", "version": "v2", "published": "2010-12-13T11:11:22.000Z", "updated": "2010-12-14T07:07:25.000Z", "title": "A solution to a conjecture on the rainbow connection number", "authors": [ "Xiaolin Chen", "Xueliang Li" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "For a graph $G$, Chartrand et al. defined the rainbow connection number $rc(G)$ and the strong rainbow connection number $src(G)$ in \"G. Charand, G.L. John, K.A. Mckeon, P. Zhang, Rainbow connection in graphs, Mathematica Bohemica, 133(1)(2008) 85-98\". They raised the following conjecture: for two given positive $a$ and $b$, there exists a connected graph $G$ such that $rc(G)=a$ and $src(G)=b$ if and only if $a=b\\in\\{1,2\\}$ or $ 3\\leq a\\leq b$\". In this short note, we will show that the conjecture is true.", "revisions": [ { "version": "v2", "updated": "2010-12-14T07:07:25.000Z" } ], "analyses": { "subjects": [ "05C15", "05C40" ], "keywords": [ "conjecture", "strong rainbow connection number", "mathematica bohemica", "short note", "connected graph" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2693C" } } }