{ "id": "1012.2630", "version": "v2", "published": "2010-12-13T04:31:43.000Z", "updated": "2012-05-21T02:07:40.000Z", "title": "An algebraic classification of entangled states", "authors": [ "Roman V. Buniy", "Thomas W. Kephart" ], "comment": "published version", "journal": "J. Phys. A: Math. Theor. 45, 185304 (2012)", "doi": "10.1088/1751-8113/45/18/185304", "categories": [ "quant-ph", "hep-th", "math-ph", "math.MP" ], "abstract": "We provide a classification of entangled states that uses new discrete entanglement invariants. The invariants are defined by algebraic properties of linear maps associated with the states. We prove a theorem on a correspondence between the invariants and sets of equivalent classes of entangled states. The new method works for an arbitrary finite number of finite-dimensional state subspaces. As an application of the method, we considered a large selection of cases of three subspaces of various dimensions. We also obtain an entanglement classification of four qubits, where we find 27 fundamental sets of classes.", "revisions": [ { "version": "v2", "updated": "2012-05-21T02:07:40.000Z" } ], "analyses": { "keywords": [ "entangled states", "algebraic classification", "discrete entanglement invariants", "finite-dimensional state subspaces", "arbitrary finite number" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2012, "month": "May", "volume": 45, "number": 18, "pages": 185304 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 881038, "adsabs": "2012JPhA...45r5304B" } } }