{ "id": "1012.2593", "version": "v1", "published": "2010-12-12T22:02:19.000Z", "updated": "2010-12-12T22:02:19.000Z", "title": "Lyapunov spectrum for exceptional rational maps", "authors": [ "Katrin Gelfert", "Feliks Przytycki", "Michal Rams", "Juan Rivera-Letelier" ], "categories": [ "math.DS" ], "abstract": "We study the dimension spectrum for Lyapunov exponents for rational maps acting on the Riemann sphere and characterize it by means of the Legendre-Fenchel transform of the hidden variational pressure. This pressure is defined by means of the variational principle with respect to non-atomic invariant probability measures and is associated to certain $\\sigma$-finite conformal measures. This allows to extend previous results to exceptional rational maps.", "revisions": [ { "version": "v1", "updated": "2010-12-12T22:02:19.000Z" } ], "analyses": { "subjects": [ "37D25", "37C45", "28D99", "37F10" ], "keywords": [ "exceptional rational maps", "lyapunov spectrum", "non-atomic invariant probability measures", "hidden variational pressure", "finite conformal measures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2593G" } } }