{ "id": "1012.2372", "version": "v2", "published": "2010-12-10T20:30:10.000Z", "updated": "2013-07-23T10:21:51.000Z", "title": "Singularity of Random Matrices over Finite Fields", "authors": [ "Kenneth Maples" ], "comment": "16 pages, no figures", "categories": [ "math.CO", "math.PR" ], "abstract": "Let $A$ be an $n \\times n$ random matrix with iid entries over a finite field of order $q$. Suppose that the entries do not take values in any additive coset of the field with probability greater than $1 - \\alpha$ for some fixed $0 < \\alpha < 1$. We show that the singularity probability converges to the uniform limit with an exponentially small error depending only on $\\alpha$. We also show that the distribution of the determinant of $A$ converges to its limiting distribution at an exponential rate.", "revisions": [ { "version": "v2", "updated": "2013-07-23T10:21:51.000Z" } ], "analyses": { "subjects": [ "15B52", "15B33", "60C05" ], "keywords": [ "finite field", "random matrices", "singularity probability converges", "iid entries", "random matrix" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2372M" } } }