{ "id": "1012.1825", "version": "v1", "published": "2010-12-08T18:51:18.000Z", "updated": "2010-12-08T18:51:18.000Z", "title": "Algebraic equations on the adelic closure of a Drinfeld module", "authors": [ "Dragos Ghioca", "Thomas Scanlon" ], "categories": [ "math.NT", "math.AG", "math.LO" ], "abstract": "Let $k$ be a field of positive characteristic and $K = k(V)$ a function field of a variety $V$ over $k$ and let ${\\mathbf A}_K$ be a ring of ad\\'{e}les of $K$ with respect to a cofinite set of the places on $K$ corresponding to the divisors on $V$. Given a Drinfeld module $\\Phi:{\\mathbb F}[t] \\to \\operatorname{End}_K({\\mathbb G}_a)$ over $K$ and a positive integer $g$ we regard both $K^g$ and ${\\mathbf A}_K^g$ as $\\Phi({\\mathbb F}_p[t])$-modules under the diagonal action induced by $\\Phi$. For $\\Gamma \\subseteq K^g$ a finitely generated $\\Phi(\\F_p[t])$-submodule and an affine subvariety $X \\subseteq \\bG_a^g$ defined over $K$, we study the intersection of $X({\\mathbf A}_K)$, the ad\\`{e}lic points of $X$, with $bar{\\Gamma}$, the closure of $\\Gamma$ with respect to the ad\\`{e}lic topology, showing under various hypotheses that this intersection is no more than $X(K) \\cap \\Gamma$.", "revisions": [ { "version": "v1", "updated": "2010-12-08T18:51:18.000Z" } ], "analyses": { "subjects": [ "11G09", "14G17", "03C98" ], "keywords": [ "drinfeld module", "adelic closure", "algebraic equations", "function field", "cofinite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1825G" } } }