{ "id": "1012.1709", "version": "v2", "published": "2010-12-08T09:17:47.000Z", "updated": "2012-11-23T09:37:30.000Z", "title": "Automatic continued fractions are transcendental or quadratic", "authors": [ "Yann Bugeaud" ], "comment": "20 pages; the title has changed", "categories": [ "math.NT" ], "abstract": "We establish new combinatorial transcendence criteria for continued fraction expansions. Let $\\alpha = [0; a_1, a_2,...]$ be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients $(a_{\\ell})_{\\ell \\ge 1}$ of $\\alpha$ cannot be generated by a finite automaton, and that the complexity function of $(a_{\\ell})_{\\ell \\ge 1}$ cannot increase too slowly.", "revisions": [ { "version": "v2", "updated": "2012-11-23T09:37:30.000Z" } ], "analyses": { "subjects": [ "11J70", "11J81", "11J87" ], "keywords": [ "automatic continued fractions", "transcendental", "combinatorial transcendence criteria", "continued fraction expansions", "algebraic number" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1709B" } } }