{ "id": "1012.1555", "version": "v1", "published": "2010-12-07T17:13:28.000Z", "updated": "2010-12-07T17:13:28.000Z", "title": "Fractional Derivatives and Integrals on Time Scales via the Inverse Generalized Laplace Transform", "authors": [ "Nuno R. O. Bastos", "Dorota Mozyrska", "Delfim F. M. Torres" ], "comment": "Submitted 20-Aug-2010; accepted 11-Nov-2010. Ref: Int. J. Math. Comput. 11 (2011), no. J11, 1--9", "journal": "Int. J. Math. Comput. 11 (2011), no. J11, 1--9", "categories": [ "math.CA" ], "abstract": "We introduce a fractional calculus on time scales using the theory of delta (or nabla) dynamic equations. The basic notions of fractional order integral and fractional order derivative on an arbitrary time scale are proposed, using the inverse Laplace transform on time scales. Useful properties of the new fractional operators are proved.", "revisions": [ { "version": "v1", "updated": "2010-12-07T17:13:28.000Z" } ], "analyses": { "subjects": [ "26A33", "26E70", "44A10" ], "keywords": [ "inverse generalized laplace transform", "fractional derivatives", "arbitrary time scale", "fractional order integral", "inverse laplace transform" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Math. Comp." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1555B" } } }