{ "id": "1012.1290", "version": "v3", "published": "2010-12-06T19:23:45.000Z", "updated": "2012-04-05T18:13:13.000Z", "title": "Inverse Problems for deformation rings", "authors": [ "Frauke M. Bleher", "Ted Chinburg", "Bart de Smit" ], "comment": "17 pages; this paper is closely related to arXiv:1003.3143. In the third version, we added a new Section 5 with further examples", "journal": "Trans. Amer. Math. Soc. 365 (2013), 6149-6165", "doi": "10.1090/S0002-9947-2013-05848-5", "categories": [ "math.NT" ], "abstract": "Let $\\mathcal{W}$ be a complete local commutative Noetherian ring with residue field $k$ of positive characteristic $p$. We study the inverse problem for the versal deformation rings $R_{\\mathcal{W}}(\\Gamma,V)$ relative to $\\mathcal{W}$ of finite dimensional representations $V$ of a profinite group $\\Gamma$ over $k$. We show that for all $p$ and $n \\ge 1$, the ring $\\mathcal{W}[[t]]/(p^n t,t^2)$ arises as a universal deformation ring. This ring is not a complete intersection if $p^n\\mathcal{W}\\neq\\{0\\}$, so we obtain an answer to a question of M. Flach in all characteristics. We also study the `inverse inverse problem' for the ring $\\mathcal{W}[[t]]/(p^n t,t^2)$; this is to determine all pairs $(\\Gamma, V)$ such that $R_{\\mathcal{W}}(\\Gamma,V)$ is isomorphic to this ring.", "revisions": [ { "version": "v3", "updated": "2012-04-05T18:13:13.000Z" } ], "analyses": { "subjects": [ "11F80" ], "keywords": [ "local commutative noetherian ring", "inverse inverse problem", "complete local commutative noetherian", "versal deformation rings", "finite dimensional representations" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1290B" } } }