{ "id": "1012.1289", "version": "v1", "published": "2010-12-06T19:21:06.000Z", "updated": "2010-12-06T19:21:06.000Z", "title": "Classical Analysis and Nilpotent Lie Groups", "authors": [ "Joseph A. Wolf" ], "comment": "Expository article; to appear in Edizioni della Scuola Normale di Pisa", "categories": [ "math.CA" ], "abstract": "Classical Fourier analysis has an exact counterpart in group theory and in some areas of geometry. Here I'll describe how this goes for nilpotent Lie groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won't go into that here. The analytic ideas are not so different from those of the classical Fourier transform and Fourier inversion theories in one real variable.", "revisions": [ { "version": "v1", "updated": "2010-12-06T19:21:06.000Z" } ], "analyses": { "keywords": [ "classical analysis", "nilpotent lie group structure", "infinite dimensional analogs", "fourier inversion theories", "classical fourier analysis" ], "tags": [ "expository article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1289W" } } }