{ "id": "1012.1149", "version": "v4", "published": "2010-12-06T12:31:32.000Z", "updated": "2012-09-09T01:18:57.000Z", "title": "Manin triples and differential operators on quantum groups", "authors": [ "Toshiyuki Tanisaki" ], "comment": "34pages. arXiv admin note: text overlap with arXiv:0802.1590", "categories": [ "math.RT", "math.QA", "math.SG" ], "abstract": "By taking the quasi-classical limit of the ring of differential operators on a quantized algebraic group at roots of 1 we obtain a certain Poisson manifold. We show that this Poisson structure coincides with the one introduced by Semenov-Tyan-Shansky geometrically in the framework of Manin triples.", "revisions": [ { "version": "v4", "updated": "2012-09-09T01:18:57.000Z" } ], "analyses": { "subjects": [ "20G05", "17B37", "53D17" ], "keywords": [ "differential operators", "manin triples", "quantum groups", "poisson structure coincides", "quantized algebraic group" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.1149T" } } }