{ "id": "1012.0781", "version": "v3", "published": "2010-12-03T16:37:53.000Z", "updated": "2017-11-16T17:06:43.000Z", "title": "Correlation between Angle and Side", "authors": [ "Steven R. Finch" ], "comment": "13 pages", "categories": [ "math.PR", "math.CA" ], "abstract": "Let alpha be an arbitrary angle in a random spherical triangle Delta and a be the side opposite alpha. (The sphere has radius 1; vertices of Delta are independent and uniform.) If some other side is constrained to be pi/2, then E(alpha*a)=3.05.... If instead some other angle is fixed at pi/2, then E(alpha*a)=2.87.... In our study of the latter scenario, both Apery's constant and Catalan's constant emerge. We also review Miles' 1971 proof that E(alpha*a)=pi^2/2-2 when no constraints are in place.", "revisions": [ { "version": "v2", "updated": "2010-12-10T14:01:03.000Z", "comment": "12 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2017-11-16T17:06:43.000Z" } ], "analyses": { "subjects": [ "60D05", "51M04", "51M25", "62H10", "62E15", "97G60", "33C05", "33E05" ], "keywords": [ "correlation", "random spherical triangle delta", "side opposite alpha", "catalans constant emerge", "arbitrary angle" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.0781F" } } }