{ "id": "1012.0700", "version": "v1", "published": "2010-12-03T11:02:06.000Z", "updated": "2010-12-03T11:02:06.000Z", "title": "Behaviour near extinction for the Fast Diffusion Equation on bounded domains", "authors": [ "Matteo Bonforte", "Gabriele Grillo", "Juan Luis Vazquez" ], "categories": [ "math.AP" ], "abstract": "We consider the Fast Diffusion Equation $u_t=\\Delta u^m$ posed in a bounded smooth domain $\\Omega\\subset \\RR^d$ with homogeneous Dirichlet conditions; the exponent range is $m_s=(d-2)_+/(d+2)