{ "id": "1012.0675", "version": "v2", "published": "2010-12-03T09:34:15.000Z", "updated": "2013-09-10T20:13:19.000Z", "title": "Multiplicative zero-one laws and metric number theory", "authors": [ "Victor Beresnevich", "Alan Haynes", "Sanju Velani" ], "comment": "13 pages", "journal": "Acta Arithmetica, 160(2), 101-114, 2013", "categories": [ "math.NT" ], "abstract": "We develop the classical theory of Diophantine approximation without assuming monotonicity or convexity. A complete `multiplicative' zero-one law is established akin to the `simultaneous' zero-one laws of Cassels and Gallagher. As a consequence we are able to establish the analogue of the Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient is the rather simple but nevertheless versatile `cross fibering principle'. In a nutshell it enables us to `lift' zero-one laws to higher dimensions.", "revisions": [ { "version": "v2", "updated": "2013-09-10T20:13:19.000Z" } ], "analyses": { "keywords": [ "metric number theory", "multiplicative zero-one laws", "diophantine approximation", "duffin-schaeffer theorem", "cross fibering principle" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.0675B" } } }