{ "id": "1012.0294", "version": "v3", "published": "2010-12-01T20:40:01.000Z", "updated": "2012-10-30T21:23:35.000Z", "title": "Sharp bounds on the rate of convergence of the empirical covariance matrix", "authors": [ "Radosław Adamczak", "Alexander E. Litvak", "Alain Pajor", "Nicole Tomczak-Jaegermann" ], "categories": [ "math.PR", "math.FA" ], "abstract": "Let $X_1,..., X_N\\in\\R^n$ be independent centered random vectors with log-concave distribution and with the identity as covariance matrix. We show that with overwhelming probability at least $1 - 3 \\exp(-c\\sqrt{n}\\r)$ one has $ \\sup_{x\\in S^{n-1}} \\Big|\\frac{1/N}\\sum_{i=1}^N (||^2 - \\E||^2\\r)\\Big| \\leq C \\sqrt{\\frac{n/N}},$ where $C$ is an absolute positive constant. This result is valid in a more general framework when the linear forms $()_{i\\leq N, x\\in S^{n-1}}$ and the Euclidean norms $(|X_i|/\\sqrt n)_{i\\leq N}$ exhibit uniformly a sub-exponential decay. As a consequence, if $A$ denotes the random matrix with columns $(X_i)$, then with overwhelming probability, the extremal singular values $\\lambda_{\\rm min}$ and $\\lambda_{\\rm max}$ of $AA^\\top$ satisfy the inequalities $ 1 - C\\sqrt{{n/N}} \\le {\\lambda_{\\rm min}/N} \\le \\frac{\\lambda_{\\rm max}/N} \\le 1 + C\\sqrt{{n/N}} $ which is a quantitative version of Bai-Yin theorem \\cite{BY} known for random matrices with i.i.d. entries.", "revisions": [ { "version": "v3", "updated": "2012-10-30T21:23:35.000Z" } ], "analyses": { "subjects": [ "52A20", "46B09", "52A21", "15A52", "60E15" ], "keywords": [ "empirical covariance matrix", "sharp bounds", "convergence", "overwhelming probability", "independent centered random vectors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.0294A" } } }