{ "id": "1011.6355", "version": "v1", "published": "2010-11-29T20:21:47.000Z", "updated": "2010-11-29T20:21:47.000Z", "title": "Exact asymptotics of supremum of a stationary Gaussian process over a random interval", "authors": [ "Marek Arendarczyk", "Krzysztof Debicki" ], "categories": [ "math.PR" ], "abstract": "Let $\\{X(t) : t \\in [0, \\infty) \\}$ be a centered stationary Gaussian process. We study the exact asymptotics of $\\pr (\\sup_{s \\in [0,T]} X(t) > u)$, as $u \\to \\infty$, where $T$ is an independent of \\{X(t)\\} nonnegative random variable. It appears that the heaviness of $T$ impacts the form of the asymptotics, leading to three scenarios: the case of integrable $T$, the case of $T$ having regularly varying tail distribution with parameter $\\lambda\\in(0,1)$ and the case of $T$ having slowly varying tail distribution.", "revisions": [ { "version": "v1", "updated": "2010-11-29T20:21:47.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70", "68M20" ], "keywords": [ "exact asymptotics", "random interval", "centered stationary gaussian process", "slowly varying tail distribution", "regularly varying tail distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.6355A" } } }