{ "id": "1011.6325", "version": "v1", "published": "2010-11-20T17:38:33.000Z", "updated": "2010-11-20T17:38:33.000Z", "title": "A trace inequality for positive definite matrices", "authors": [ "E. V. Belmega", "S. Lasaulce", "M. Debbah" ], "categories": [ "math.FA" ], "abstract": "In this note we prove that Tr (MN+ PQ)>= 0 when the following two conditions are met: (i) the matrices M, N, P, Q are structured as follows: M = A -B, N = inv(B)-inv(A), P = C-D, Q =inv (B+D)-inv(A+C), where inv(X) denotes the inverse matrix of X (ii) A, B are positive definite matrices and C, D are positive semidefinite matrices.", "revisions": [ { "version": "v1", "updated": "2010-11-20T17:38:33.000Z" } ], "analyses": { "keywords": [ "positive definite matrices", "trace inequality", "positive semidefinite matrices", "inverse matrix", "conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.6325B" } } }