{ "id": "1011.6165", "version": "v1", "published": "2010-11-29T09:40:46.000Z", "updated": "2010-11-29T09:40:46.000Z", "title": "Concentration of empirical distribution functions with applications to non-i.i.d. models", "authors": [ "S. G. Bobkov", "F. Götze" ], "comment": "Published in at http://dx.doi.org/10.3150/10-BEJ254 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)", "journal": "Bernoulli 2010, Vol. 16, No. 4, 1385-1414", "doi": "10.3150/10-BEJ254", "categories": [ "math.ST", "stat.TH" ], "abstract": "The concentration of empirical measures is studied for dependent data, whose joint distribution satisfies Poincar\\'{e}-type or logarithmic Sobolev inequalities. The general concentration results are then applied to spectral empirical distribution functions associated with high-dimensional random matrices.", "revisions": [ { "version": "v1", "updated": "2010-11-29T09:40:46.000Z" } ], "analyses": { "keywords": [ "applications", "high-dimensional random matrices", "spectral empirical distribution functions", "general concentration results" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.6165B" } } }