{ "id": "1011.5707", "version": "v1", "published": "2010-11-26T05:44:18.000Z", "updated": "2010-11-26T05:44:18.000Z", "title": "On Topological Homotopy Groups of $n$-Hawaiian like spaces", "authors": [ "Fateme Helen Ghane", "Zainab Hamed", "Behrooz Mashayekhy", "Hanieh Mirebrahimi" ], "comment": "8 pages", "journal": "Topology Proceedings, Vol. 36, (2010) 255-266", "categories": [ "math.AT" ], "abstract": "By an $n$-Hawaiian like space $X$ we mean the natural inverse limit, $\\displaystyle{\\varprojlim (Y_i^{(n)},y_i^*)}$, where $(Y_i^{(n)},y_i^*)=\\bigvee_{j\\leq i}(X_j^{(n)},x_j^*)$ is the wedge of $X_j^{(n)}$'s in which $X_j^{(n)}$'s are $(n-1)$-connected, locally $(n-1)$-connected, $n$-semilocally simply connected and compact CW spaces. In this paper, first we show that the natural homomorphism $\\displaystyle{\\beta_n:\\pi_n(X,*)\\rightarrow \\varprojlim \\pi_n(Y_i^{(n)},y_i^*)}$ is bijection. Second, using this fact we prove that the topological $n$-homotopy group of an $n$-Hawaiian like space, $\\pi_n^{top}(X,x^*)$, is a topological group for all $n\\geq 2$ which is a partial answer to the open question whether $\\pi_n^{top}(X,x^*)$ is a topological group for any space $X$ and $n\\geq 1$. Moreover, we show that $\\pi_n^{top}(X,x^*)$ is metrizable.", "revisions": [ { "version": "v1", "updated": "2010-11-26T05:44:18.000Z" } ], "analyses": { "subjects": [ "55Q05", "55U40", "54H11", "55P35" ], "keywords": [ "topological homotopy groups", "compact cw spaces", "natural inverse limit", "topological group", "open question" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.5707G" } } }