{ "id": "1011.5460", "version": "v2", "published": "2010-11-24T19:04:48.000Z", "updated": "2011-07-27T17:50:53.000Z", "title": "Quantum Walks on Regular Graphs and Eigenvalues", "authors": [ "Chris Godsil", "Krystal Guo" ], "categories": [ "math.CO", "quant-ph" ], "abstract": "We study the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of $S^+(U^3)$, a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We find the eigenvalues of $S^+(U)$ and $S^+(U^2)$ for regular graphs.", "revisions": [ { "version": "v2", "updated": "2011-07-27T17:50:53.000Z" } ], "analyses": { "keywords": [ "quantum walk", "eigenvalues", "distinguishes strongly regular graphs", "transition matrix", "amplitudes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.5460G" } } }