{ "id": "1011.4613", "version": "v1", "published": "2010-11-20T20:58:13.000Z", "updated": "2010-11-20T20:58:13.000Z", "title": "Approximation of functions and their derivatives by analytic maps on certain Banach spaces", "authors": [ "D. Azagra", "R. Fry", "L. Keener" ], "comment": "17 pages", "categories": [ "math.FA" ], "abstract": "Let X be a separable Banach space which admits a separating polynomial; in particular X a separable Hilbert space. Let $f:X \\rightarrow R$ be bounded, Lipschitz, and $C^1$ with uniformly continuous derivative. Then for each {\\epsilon}>0, there exists an analytic function $g:X \\rightarrow R$ with $|g-f|<\\epsilon$ and $||g'-f'||<\\epsilon$.", "revisions": [ { "version": "v1", "updated": "2010-11-20T20:58:13.000Z" } ], "analyses": { "keywords": [ "analytic maps", "approximation", "derivative", "separable banach space" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.4613A" } } }