{ "id": "1011.4501", "version": "v2", "published": "2010-11-19T19:14:39.000Z", "updated": "2011-04-14T05:24:48.000Z", "title": "Norm-Euclidean Galois fields", "authors": [ "Kevin J. McGown" ], "categories": [ "math.NT" ], "abstract": "Let K be a Galois number field of prime degree $\\ell$. Heilbronn showed that for a given $\\ell$ there are only finitely many such fields that are norm-Euclidean. In the case of $\\ell=2$ all such norm-Euclidean fields have been identified, but for $\\ell\\neq 2$, little else is known. We give the first upper bounds on the discriminants of such fields when $\\ell>2$. Our methods lead to a simple algorithm which allows one to generate a list of candidate norm-Euclidean fields up to a given discriminant, and we provide some computational results.", "revisions": [ { "version": "v2", "updated": "2011-04-14T05:24:48.000Z" } ], "analyses": { "subjects": [ "11A05", "11R04", "11Y40" ], "keywords": [ "norm-euclidean galois fields", "galois number field", "candidate norm-euclidean fields", "first upper bounds", "discriminant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.4501M" } } }