{ "id": "1011.4262", "version": "v1", "published": "2010-11-18T19:35:34.000Z", "updated": "2010-11-18T19:35:34.000Z", "title": "The distribution functions of $σ(n)/n$ and $n/φ(n)$, II", "authors": [ "Andreas Weingartner" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "Let $\\sigma(n)$ be the sum of the positive divisors of $n$, and let $A(t)$ be the natural density of the set of positive integers $n$ satisfying $\\sigma(n)/n \\ge t$. We give an improved asymptotic result for $\\log A(t)$ as $t$ grows unbounded. The same result holds if $\\sigma(n)/n$ is replaced by $n/\\phi(n)$, where $\\phi(n)$ is Euler's totient function.", "revisions": [ { "version": "v1", "updated": "2010-11-18T19:35:34.000Z" } ], "analyses": { "subjects": [ "11N25", "11N60" ], "keywords": [ "distribution functions", "eulers totient function", "natural density", "asymptotic result", "result holds" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.4262W" } } }