{ "id": "1011.4166", "version": "v1", "published": "2010-11-18T10:25:14.000Z", "updated": "2010-11-18T10:25:14.000Z", "title": "A note on Gaussian correlation inequalities for nonsymmetric sets", "authors": [ "Adrian P. C. Lim", "Dejun Luo" ], "comment": "9 pages", "journal": "Statistics & Probability Letters 82 (2012), no. 1, 196--202", "doi": "10.1016/j.spl.2011.10.001", "categories": [ "math.PR" ], "abstract": "We consider the Gaussian correlation inequality for nonsymmetric convex sets. More precisely, if $A\\subset\\mathbb{R}^d$ is convex and the origin $0\\in A$, then for any ball $B$ centered at the origin, it holds $\\gamma_d(A\\cap B)\\geq \\gamma_d(A)\\gamma_d(B)$, where $\\gamma_d$ is the standard Gaussian measure on $\\mathbb{R}^d$. This generalizes Proposition 1 in [Arch. Rational Mech. Anal. 161 (2002), 257--269].", "revisions": [ { "version": "v1", "updated": "2010-11-18T10:25:14.000Z" } ], "analyses": { "keywords": [ "gaussian correlation inequality", "nonsymmetric sets", "nonsymmetric convex sets", "standard gaussian measure", "generalizes proposition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.4166L" } } }