{ "id": "1011.4140", "version": "v1", "published": "2010-11-18T06:27:04.000Z", "updated": "2010-11-18T06:27:04.000Z", "title": "Embeddedness of proper minimal submanifolds in homogeneous spaces", "authors": [ "Sung-Hong Min" ], "comment": "20 pages, 2 figures", "categories": [ "math.DG" ], "abstract": "We prove the three embeddedness results as follows. $({\\rm i})$ Let $\\Gamma_{2m+1}$ be a piecewise geodesic Jordan curve with $2m+1$ vertices in $\\mathbb{R}^n$, where $m$ is an integer $\\geq2$. Then the total curvature of $\\Gamma_{2m+1}<2m\\pi$. In particular, the total curvature of $\\Gamma_5<4\\pi$ and thus any minimal surface $\\Sigma \\subset \\mathbb{R}^n$ bounded by $\\Gamma_5$ is embedded. Let $\\Gamma_5$ be a piecewise geodesic Jordan curve with $5$ vertices in $\\mathbb{H}^n$. Then any minimal surface $\\Sigma \\subset \\mathbb{H}^n$ bounded by $\\Gamma_5$ is embedded. If $\\Gamma_5$ is in a geodesic ball of radius $\\frac{\\pi}{4}$ in $\\mathbb{S}^n_+$, then $\\Sigma \\subset \\mathbb{S}^n_+$ is also embedded. As a consequence, $\\Gamma_5$ is an unknot in $\\mathbb{R}^3$, $\\mathbb{H}^3$ and $\\mathbb{S}^3_+$. $({\\rm ii})$ Let $\\Sigma$ be an $m$-dimensional proper minimal submanifold in $\\mathbb{H}^n$ with the ideal boundary $\\partial_{\\infty} \\Sigma = \\Gamma$ in the infinite sphere $\\mathbb{S}^{n-1}=\\partial_\\infty \\mathbb{H}^n$. If the M{\\\"o}bius volume of $\\Gamma$ $\\widetilde{\\vol}(\\Gamma) < 2\\vol(\\mathbb{S}^{m-1})$, then $\\Sigma$ is embedded. If $\\widetilde{\\vol}(\\Gamma) = 2\\vol(\\mathbb{S}^{m-1})$, then $\\Sigma$ is embedded unless it is a cone. $({\\rm iii})$ Let $\\Sigma$ be a proper minimal surface in $\\hr$. If $\\Sigma$ is vertically regular at infinity and has two ends, then $\\Sigma$ is embedded.", "revisions": [ { "version": "v1", "updated": "2010-11-18T06:27:04.000Z" } ], "analyses": { "keywords": [ "homogeneous spaces", "piecewise geodesic jordan curve", "embeddedness", "dimensional proper minimal submanifold", "total curvature" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.4140M" } } }