{ "id": "1011.3586", "version": "v1", "published": "2010-11-16T05:56:56.000Z", "updated": "2010-11-16T05:56:56.000Z", "title": "Very I-favorable spaces", "authors": [ "A. Kucharski", "Sz. Plewik", "V. Valov" ], "comment": "14 pages", "categories": [ "math.GN" ], "abstract": "We prove that a Hausdorff space $X$ is very $\\mathrm I$-favorable if and only if $X$ is the almost limit space of a $\\sigma$-complete inverse system consisting of (not necessarily Hausdorff) second countable spaces and surjective d-open bonding maps. It is also shown that the class of Tychonoff very $\\mathrm I$-favorable spaces with respect to the co-zero sets coincides with the d-openly generated spaces.", "revisions": [ { "version": "v1", "updated": "2010-11-16T05:56:56.000Z" } ], "analyses": { "keywords": [ "i-favorable spaces", "co-zero sets coincides", "hausdorff space", "complete inverse system consisting", "second countable spaces" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.3586K" } } }