{ "id": "1011.3390", "version": "v2", "published": "2010-11-15T14:16:29.000Z", "updated": "2011-03-11T09:39:35.000Z", "title": "On the finiteness of the Morse Index for Schrödinger operators", "authors": [ "Baptiste Devyver" ], "comment": "17 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "Let H=$\\Delta +V$ be a Schr\\\"odinger on a complete non-compact manifold. It is known since the work of Fischer-Colbrie and Schoen that the finiteness of the negative spectrum of $H$ implies the existence of a function $\\phi$ solution of $H\\phi=0$ outside a compact set. This has consequences for minimal surfaces and for the finiteness of spaces of harmonic sections in the Bochner method. Here we show that the converse statement also holds: if there exists $\\phi$ solution of $H\\phi=0$ outside a compact set, then $H$ has a finite number of negative eigenvalues.", "revisions": [ { "version": "v2", "updated": "2011-03-11T09:39:35.000Z" } ], "analyses": { "keywords": [ "morse index", "schrödinger operators", "finiteness", "compact set", "complete non-compact manifold" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.3390D" } } }