{ "id": "1011.2713", "version": "v2", "published": "2010-11-11T17:13:39.000Z", "updated": "2011-09-13T09:28:50.000Z", "title": "Fractional $P(φ)_1$-processes and Gibbs measures", "authors": [ "Kamil Kaleta", "Jozsef Lorinczi" ], "comment": "37 pages", "journal": "Stochastic Process. Appl. 122 (10) (2012) 3580-3617", "doi": "10.1016/j.spa.2012.06.001", "categories": [ "math.PR", "math.SP" ], "abstract": "We define and prove existence of fractional $P(\\phi)_1$-processes as random processes generated by fractional Schr\\\"odinger semigroups with Kato-decomposable potentials. Also, we show that the measure of such a process is a Gibbs measure with respect to the same potential. We give conditions of its uniqueness and characterize its support relating this with intrinsic ultracontractivity properties of the semigroup and the fall-off of the ground state. To achieve that we establish and analyze these properties first.", "revisions": [ { "version": "v2", "updated": "2011-09-13T09:28:50.000Z" } ], "analyses": { "subjects": [ "47D08", "47G30", "60G52" ], "keywords": [ "gibbs measure", "fractional", "intrinsic ultracontractivity properties", "properties first", "ground state" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "inspire": 877119, "adsabs": "2010arXiv1011.2713K" } } }