{ "id": "1011.2431", "version": "v4", "published": "2010-11-10T16:59:19.000Z", "updated": "2015-06-26T09:52:36.000Z", "title": "Conjugacy classes in Weyl groups and q-W algebras", "authors": [ "A. Sevostyanov" ], "comment": "48 pages; some arguments in the proof of Proposition 12.2 are clarified", "categories": [ "math.RT", "hep-th", "math.QA" ], "abstract": "We define noncommutative deformations $W_q^s(G)$ of algebras of functions on certain (finite coverings of) transversal slices to the set of conjugacy classes in an algebraic group $G$ which play the role of Slodowy slices in algebraic group theory. The algebras $W_q^s(G)$ called q-W algebras are labeled by (conjugacy classes of) elements $s$ of the Weyl group of $G$. The algebra $W_q^s(G)$ is a quantization of a Poisson structure defined on the corresponding transversal slice in $G$ with the help of Poisson reduction of a Poisson bracket associated to a Poisson-Lie group $G^*$ dual to a quasitriangular Poisson-Lie group. The algebras $W_q^s(G)$ can be regarded as quantum group counterparts of W-algebras. However, in general they are not deformations of the usual W-algebras.", "revisions": [ { "version": "v3", "updated": "2014-06-30T13:42:32.000Z", "comment": "48 pages; some proofs improved; misprints corrected", "journal": null, "doi": null }, { "version": "v4", "updated": "2015-06-26T09:52:36.000Z" } ], "analyses": { "subjects": [ "17B37", "17B63", "20F55", "20G20" ], "keywords": [ "conjugacy classes", "q-w algebras", "weyl group", "transversal slice", "quasitriangular poisson-lie group" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "inspire": 876685, "adsabs": "2010arXiv1011.2431S" } } }