{ "id": "1011.1856", "version": "v2", "published": "2010-11-08T17:34:59.000Z", "updated": "2011-08-05T17:06:55.000Z", "title": "Lagrangian Averaged Navier-Stokes equations with rough data in Sobolev space", "authors": [ "Nathan Pennington" ], "categories": [ "math.AP" ], "abstract": "We prove the existence of short time, low regularity solutions to the incompressible, isotropic Lagrangian Averaged Navier-Stokes equations with initial data in Sobolev spaces. In the special case of initial datum in the Sobolev space $H^{3/2,2}(\\mathbb{R}^3)$, we obtain a global solution, improving on previous results, which required data in $H^{3,2}(\\mathbb{R}^3)$.", "revisions": [ { "version": "v2", "updated": "2011-08-05T17:06:55.000Z" } ], "analyses": { "keywords": [ "sobolev space", "rough data", "isotropic lagrangian averaged navier-stokes equations", "initial datum", "low regularity solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.1856P" } } }