{ "id": "1011.1061", "version": "v1", "published": "2010-11-04T05:22:29.000Z", "updated": "2010-11-04T05:22:29.000Z", "title": "Surfaces with $p_g = 0$, $K^2 = 5$ and bicanonical maps of degree 4", "authors": [ "Lei Zhang" ], "comment": "35pages", "categories": [ "math.AG" ], "abstract": "Let $S$ be a minimal surface of general type with $p_g(S) = 0, K_S^2 = 5$ and bicanonical map of degree 4. Denote by $\\Sigma$ the bicanonical image. If $\\Sigma$ is smooth, then $S$ is a Burniat surface; and if $\\Sigma$ is singular, then we reduced $\\Sigma$ to one case and described it, furthermore $S$ has at most one $(-2)$-curve.", "revisions": [ { "version": "v1", "updated": "2010-11-04T05:22:29.000Z" } ], "analyses": { "keywords": [ "bicanonical map", "minimal surface", "general type", "burniat surface" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.1061Z" } } }