{ "id": "1011.0667", "version": "v2", "published": "2010-11-02T16:37:17.000Z", "updated": "2010-11-27T19:28:25.000Z", "title": "A new characterization of Sobolev spaces on $\\mathbb{R}^n$", "authors": [ "Roc Alabern", "Joan Mateu", "Joan Verdera" ], "comment": "Two references added. Some statements have been improved and proofs made clearer. Typos corrected", "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "In this paper we present a new characterization of Sobolev spaces on Euclidian spaces ($\\mathbb{R}^n$). Our characterizing condition is obtained via a quadratic multiscale expression which exploits the particular symmetry properties of Euclidean space. An interesting feature of our condition is that depends only on the metric of $\\mathbb{R}^n$ and the Lebesgue measure, so that one can define Sobolev spaces of any order of smoothness on any metric measure space.", "revisions": [ { "version": "v2", "updated": "2010-11-27T19:28:25.000Z" } ], "analyses": { "subjects": [ "46B35", "42B99", "31B99" ], "keywords": [ "characterization", "metric measure space", "define sobolev spaces", "quadratic multiscale expression", "lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.0667A" } } }