{ "id": "1011.0529", "version": "v1", "published": "2010-11-02T07:26:32.000Z", "updated": "2010-11-02T07:26:32.000Z", "title": "Equidistribution of periodic points for modular correspondences", "authors": [ "Tien-Cuong Dinh" ], "comment": "7 pages", "categories": [ "math.DS" ], "abstract": "Let T be an exterior modular correspondence on an irreducible locally symmetric space X. In this note, we show that the isolated fixed points of the power T^n are equidistributed with respect to the invariant measure on X as n tends to infinity. A similar statement is given for general sequences of modular correspondences.", "revisions": [ { "version": "v1", "updated": "2010-11-02T07:26:32.000Z" } ], "analyses": { "subjects": [ "37A45", "37A05", "11F32" ], "keywords": [ "periodic points", "equidistribution", "exterior modular correspondence", "irreducible locally symmetric space", "invariant measure" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.0529D" } } }