{ "id": "1010.5906", "version": "v4", "published": "2010-10-28T09:44:58.000Z", "updated": "2011-12-19T20:50:39.000Z", "title": "Degenerations of K3 Surfaces of Degree Two", "authors": [ "Alan Thompson" ], "comment": "Final version. Accepted for publication by the Transactions of the American Mathematical Society", "journal": "Trans. Amer. Math. Soc. 366 (2014), No. 1, 219-243", "doi": "10.1090/S0002-9947-2013-05759-5", "categories": [ "math.AG" ], "abstract": "We consider a semistable degeneration of K3 surfaces, equipped with an effective divisor that defines a polarisation of degree two on a general fibre. We show that the map to the relative log canonical model of the degeneration maps every fibre to either a sextic hypersurface in P(1,1,1,3) or a complete intersection of degree (2,6) in P(1,1,1,2,3). Furthermore, we find an explicit description of the hypersurfaces and complete intersections that can arise, thereby giving a full classification of the possible singular fibres.", "revisions": [ { "version": "v4", "updated": "2011-12-19T20:50:39.000Z" } ], "analyses": { "subjects": [ "14D06", "14J28", "14E30", "43.40.Le", "42.81.Pa", "07.05.Hd" ], "keywords": [ "k3 surfaces", "complete intersection", "full classification", "general fibre", "singular fibres" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011AIPC.1335....1T" } } }