{ "id": "1010.5614", "version": "v1", "published": "2010-10-27T09:10:59.000Z", "updated": "2010-10-27T09:10:59.000Z", "title": "Enumeration of linear chord diagrams", "authors": [ "J. E. Andersen", "R. C. Penner", "C. M. Reidys", "M. S. Waterman" ], "categories": [ "math.CO" ], "abstract": "A linear chord diagram canonically determines a fatgraph and hence has an associated genus $g$. We compute the natural generating function ${\\bf C}_g(z)=\\sum_{n\\geq 0} {\\bf c}_g(n)z^n$ for the number ${\\bf c}_g(n)$ of linear chord diagrams of fixed genus $g\\geq 1$ with a given number $n\\geq 0$ of chords and find the remarkably simple formula ${\\bf C}_g(z)=z^{2g}R_g(z) (1-4z)^{{1\\over 2}-3g}$, where $R_g(z)$ is a polynomial of degree at most $g-1$ with integral coefficients satisfying $R_g({1\\over 4})\\neq 0$ and $R_g(0) = {\\bf c}_g(2g)\\neq 0.$ In particular, ${\\bf C}_g(z)$ is algebraic over $\\mathbb C(z)$, which generalizes the corresponding classical fact for the generating function ${\\bf C}_0(z)$ of the Catalan numbers. As a corollary, we also calculate a related generating function germaine to the enumeration of knotted RNA secondary structures, which is again found to be algebraic.", "revisions": [ { "version": "v1", "updated": "2010-10-27T09:10:59.000Z" } ], "analyses": { "keywords": [ "enumeration", "linear chord diagram canonically determines", "knotted rna secondary structures", "remarkably simple formula", "natural generating function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.5614A" } } }